

System Engineering Results for System Wide Information Management (SWIM) using COTS Technologies

Vic Patel

Steve Prescott

- 1. FAA Goals SWIM COTS System Engineering Project
- 2. Solution Architecture
- 3. Results
 - a. Scorecard
 - b. Focus Area #1: COTS Demonstration
 - c. Focus Area #2: Reliability, Availability, Scalability
 - d. Focus Area #3: Security
 - e. Focus Area #4: Weather Transactions
 - f. Focus Area #5: Surveillance Transactions
 - g. Focus Area #6: Infrastructure Management
- 4. Conclusions & Next Steps

- 1. FAA Goals SWIM COTS System Engineering Project
- 2. Solution Architecture
- 3. Results
 - a. Scorecard
 - b. Focus Area #1: COTS Demonstration
 - c. Focus Area #2: Reliability, Availability, Scalability
 - d. Focus Area #3: Security
 - e. Focus Area #4: Weather Transactions
 - f. Focus Area #5: Surveillance Transactions
 - g. Focus Area #6: Infrastructure Management
- 4. Conclusions & Next Steps

FAA Goals – SWIM System Engineering & COTS

COTS vs. Custom Design:

Which approach best meets FAA requirements in terms of functionality & performance?

Schedule

Which approach minimizes FAA total cost of ownership?

Which approach best meets FAA timeline requirements?

<u>COTS – Questions To Answer:</u>

a. Functionality: Can a COTS solution meet FAA functional requirements?

b. Robustness: Can a COTS solution provide a sufficiently robust infrastructure?

c. Security: Can a COTS solution adequately secure FAA information?

d. FAA Data: Can a COTS solution handle common FAA data?

e. Manageability: Can a COTS solution provide adequate management controls?

Focus Area of Solution Validation

COTS Demonstration	 Deploy a solution based on COTS Document adherence to industry standards Demonstrate interoperability (vendor neutrality)
Reliability, Availability, and Scalability	 Run for extended period to demonstrate stability Simulate outages & workloads to stress the solution
Security	 Encrypt data Protect data privacy Authenticate & authorize users Support user oversight of updates via workflow Enforce security policies regarding web service
Weather Transactions	 Receive weather image and save in database Display weather image for user in web browser
Surveillance Transactions	 Receive RADAR data and save in database Forward info to user for real-time display in RTADS
Infrastructure Management	 Monitor status of infrastructure in real-time Receive alert notification when thresholds trip

Participants

FAA	SWIM – Program Management
FAA	SWIM – Project Requirements Definition
Oracle	SWIM – Software, Design, and Development
Dell	SWIM – Server Hardware
EMC	SWIM – Storage Hardware – Candidate #1
Apple	SWIM – Storage Hardware – Candidate #2
Red Hat	SWIM – Operating System
F5	SWIM – Networking Hardware

FAA engaged a broad range of industry partners for this exercise

- 1. FAA Goals SWIM COTS System Engineering Project
- 2. Solution Architecture
- 3. Results
 - a. Scorecard
 - b. Focus Area #1: COTS Demonstration
 - c. Focus Area #2: Reliability, Availability, Scalability
 - d. Focus Area #3: Security
 - e. Focus Area #4: Weather Transactions
 - f. Focus Area #5: Surveillance Transactions
 - g. Focus Area #6: Infrastructure Management
- 4. Conclusions & Next Steps

Architecture – Vision

SOA Framework is a broker between providers and consumers of information

Service Controls:

- ✓ Application Repository
- ✓ Workflow
- **Business Activity Monitoring**
- Integration with Applications & Data

Information Controls:

- ✓ Information Storage (database)
- High Availability (mission critical)
- High Performance (real-time)
- Geographic Data Support (maps)

Security Controls:

- User Authentication & Authorization
- Role-based Access Control
- ✓ Web Service Security
- Encryption of Data (At-Rest and In-Transit)
- Privacy of Data in Shared Storage
- ✓ Federated Access External Users

Management Controls:

- ✓ Consolidated Dashboard for Mgmt
- Service Level Agreements Enforce
- **Automated Patching & Updates**
- Diagnostic & Tuning Tools
- Policy Manager for Governance

SWIM infrastructure provides the FAA with control in four important areas

Architecture – Logical Modules

A collection of COTS products was deployed to provide these services

Architecture – Physical Deployment

Eight servers at FAA Tech Center in NJ hosted this solution

- 1. FAA Goals SWIM COTS System Engineering Project
- 2. Solution Architecture
- 3. Results
 - a. Scorecard
 - b. Focus Area #1: COTS Demonstration
 - c. Focus Area #2: Reliability, Availability, Scalability
 - d. Focus Area #3: Security
 - e. Focus Area #4: Weather Transactions
 - f. Focus Area #5: Surveillance Transactions
 - g. Focus Area #6: Infrastructure Management
- 4. Conclusions & Next Steps

Results - Scorecard

COTS Demonstration	4 Use Cases	✓ Complete
Reliability, Availability, and Scalability	6 Use Cases	✓ Complete
Security	10 Use Cases	✓ Complete
Weather Transactions	7 Use Cases	✓ Complete
Surveillance Transactions	4 Use Cases	✓ Complete
Infrastructure Management	2 Use Cases	✓ Complete

FAA and its partners completed all 33 use-cases outlined at the project inception

Results – Focus Area #1: COTS Demonstration

Transactional Database	COTS Solution	✓ Complete
Metadata Repository	COTS Solution	✓ Complete
Application Server	COTS Solution	✓ Complete
Identity Management	COTS Solution	✓ Complete
Web Services Security	COTS Solution	✓ Complete
Business Process Management	COTS Solution	✓ Complete
Enterprise Service Bus	COTS Solution	✓ Complete
Business Activity Monitoring	COTS Solution	✓ Complete
In-memory Database	COTS Solution	✓ Complete
Operations Monitoring	COTS Solution	✓ Complete
Portal	COTS Solution	✓ Complete
Clustering of Databases & Application Servers	COTS Solution	✓ Complete
Public Key Infrastructure (PKI)	COTS Solution	✓ Complete
Secure Sockets Layer (SSL)	COTS Solution	✓ Complete
Integrated Development Environment (IDE)	COTS Solution	✓ Complete

Solution makes broad use of COTS products & demonstrates interoperability

Results – Focus Area #2: Availability & Scalability

Extended Run	Ran solution continuously over 12-hour period with continuous transaction workload. Verified: - All components operational - Information flowing through system	✓ Complete
Database	Clustered databases. Verified proper response to these actions: - Disabling a database node - Adding a database node	✓ Complete
Workflow	Clustered workflow. Verified proper response to these actions: - Disabling a workflow node - Adding a workflow node	✓ Complete
Identity Management	Documented enterprise scalable solution	✓ Complete

Solution provides a highly available and scalable infrastructure

Results – Focus Area #3: Security – Architecture

Solution provides security of information, users, and application access

Results – Focus Area #3: Security – Activity Monitoring

Business Activity Monitoring provides FAA users with real-time updates

Results – Focus Area #4: Weather – Use Cases

Functionality	 Verified support for key weather actions: Received image from WARP system Accepted METAR weather data from two producers using different formats Used COTS adapter for FTP transfers Stored image in SWIM database Displayed image on user screen 	✓ Complete
Performance	Captured performance metrics to begin measuring these engineering stats: throughput, latency, and scalability	✓ Complete
Operational Event Triggering	Alerted users upon detection of severe weather that could affect operations	✓ Complete
Automatic Deletion	Automatically deleted old weather images from the SWIM database – based on a record-management retention policy	

Solution receives, stores, and displays images from FAA weather system

Results – Focus Area #4: Weather – Screenshot

FAA users request weather images and display them in standard web browser

Results – Focus Area #5: <u>Surveillance – Architecture</u>

Solution receives, stores, and posts existing FAA surveillance transactions

Results – Focus Area #5: Surveillance – Screenshot

User screens (RTADS) validate that SWIM output matches input sources

Results – Focus Area #6: Infrastructure Management

Monitoring	Used consolidated dashboard for management and trend-analysis of key infrastructure resources - Application Servers - Databases - Clusters - Storage	✓ Complete
Alert Notification Alert Notification Alert Notification - Lost connection to SWIM server - Lost connection to SWIM database		✓ Complete

Solution provides FAA with consolidated dashboard to manage IT infrastructure

- 1. FAA Goals SWIM COTS System Engineering Project
- 2. Solution Architecture
- 3. Results
 - a. Scorecard
 - b. Focus Area #1: COTS Demonstration
 - c. Focus Area #2: Reliability, Availability, Scalability
 - d. Focus Area #3: Security
 - e. Focus Area #4: Weather Transactions
 - f. Focus Area #5: Surveillance Transactions
 - g. Focus Area #6: Infrastructure Management
- 4. Conclusions & Next Steps

Conclusions

√	Quality	COTS solution satisfied all FAA requirements for the initial evaluation project.
✓	Cost	COTS solution is very cost effective: - Startup Costs are lower due to less labor necessary to integrate components of a "suite" solution - Maintenance Costs are lower due to vendor spreading support across all customers of the product set - Integration Costs are lower via leverage of pre-built connectors to legacy data sources and applications
√	Schedule	COTS project was completed in four months.

Solution proved effective in all three evaluation areas: Quality, Cost, and Schedule

Next Steps

Communities of Interest	Collect additional requirements from existing FAA "communities of interest" and extend the COTS solution to meet those COI requirements.
Converge Architectures	Converge this COTS system architecture with that of other FAA teams that are also working on SWIM solution design.
Support Personnel	Identify a long-term staffing solution for support of the COTS-based SWIM solution architecture.

Extend this project's success to the broader FAA community

